

The X-ray Properties of Optically Selected Galaxy Groups

C. Wood¹, B. Maughan¹, J. Crossett², D. Eckert³, M. Pierre⁴, and A. S. G. Robotham⁵

¹University of Bristol, ²Universidad de Valparaiso, ³University of Geneva, ⁴Université Paris-Saclay, ⁵ICRAR cai.wood@bristol.ac.uk

1 June 2023

Introduction

- ₭ What are Galaxy Groups?
- Self-similarity
- 🖌 GAMA & XXL surveys
- Keasure X-ray Luminosity of Optically Selected Galaxy Groups
- 🖌 X-Ray Luminosity Function
- 🖌 Luminosity Mass Relation

Credit: SDSS

Credit: NASA/CXC/Univ. of Chicago, I. Zhuravleva et al

Credit: X-ray: NASA/CXC/Univ. of Chicago, I. Zhuravleva et al, Optical: SDSS

1 June 2023

Self-Similarity

From: Lovisari et al. (2015)

1 June 2023

Feedback

Selection effects...

From: Eckert et al. (2021)

1 June 2023

Selection bias

From: Andreon et al. (2016)

- 🖌 XXL X-ray survey
- 🖌 GAMA spectroscopic survey
- 🕊 235 GAMA groups (with 5+ members) in overlapping region

1 June 2023

X-ray Undetected Groups

- ₭ 77% are not detected as clusters by XXL
- 🖌 Use luminosity posterior

Luminosity - Redshift Space

REFLEX II: Böhringer et al. (2014), WARPS: Koens et al. (2013), bristol.ac.uk XXL: Pacaud et al. (2016), eFEDS: Liu et al. (2021)

X-ray Luminosity Function

bristol.ac.uk

1 June 2023

Luminosity - Mass Relation

Luminosity - Mass Relation

1 June 2023

Euclid & eROSITA

- \swarrow DR1 / eRASS:1 overlap \sim 1,250 deg²
 - estimate 5,000 clusters
- \swarrow DR3 / eRASS:4 overlap \sim 7,500 deg 2
 - estimate 60,000 clusters

Forecast from Sartoris+ (2016)

Summary: Part 1

- Measured X-ray luminosities of optically selected galaxy group sample
- Observed X-ray luminosity function and inferred luminosity-mass relation shape
- Inclusion of non-detections allowed exploration of low luminosity regime
- Results suggest feedback and X-ray selection bias present

bristol.ac.uk

cai.wood 1 June 2023

1 June 2023

Euclid: Mass / Richness Covariance using ICM mass proxies

C. Wood 1, B. Maughan 1, L. Baumont 2, F. Pacaud 3, and G. Pratt^2

¹University of Bristol, ²Université Paris-Saclay, ³University of Bonn

1 June 2023

Introduction

- ₭ Why covariance matters to Euclid
- Ke How we can use ICM proxies to measure covariance
- ₭ XXL, eFEDS & HSC surveys
- 🖌 Work in Progress...

1 June 2023

Euclid

- Kear-infrared survey covering \sim 15,000 deg 2 of extragalactic sky
- ${\it k}{\it k}$ Estimate 2 $\times 10^6$ clusters with ${\rm M}>10^{14}M_{\odot}$ out to z ~ 2
- Kelection function has weak redshift dependence
- Ke Weak lensing mass measurements expected for clusters at z ≤ 0.6

Forecast from Sartoris+ (2016) Image credit: Florian Pacaud

1 June 2023

Euclid Mass / Richness Covariance

- K Clusters selected on basis of "Euclid-richness"
- ₭ Weak-lensing masses measured for all clusters
- Ke Covariance would lead to biased mass calibration
- Ke Sources of covariance: LoS elongation, Miss-centring, shared photo-z

1 June 2023

Using ICM mass proxy to measure covariance

- Keed completely independent selected sample
- Keasure Euclidized richness and weak lensing masses
- Ke Constrain the covariance based on ICM mass proxies
- Ideal mass proxy has low covariance with weak-lensing mass

1 June 2023

eFEDS & XXL X-ray data

		XXL	eFEDS
Total in Overlap		197	378
M>14, z<0.6, X-Ray constraints		47	37
Matches	AMICO	44	35
	PzWav	31	25
No Matches	AMICO	3	2
	PzWav	16	12

 \sim 180 X-ray detected clusters

cai.wood 1 June 2023

Summary: Part 2

- Ke Introduced why covariance may be an issue for Euclid
- Ke Aim to measure Mass Richness covariance using ICM proxies
- Work in progress on obtaining Euclidized measurements of X-ray selected sample
- 🖌 pre-launch project, revisit with DR1

Excluding Non-Central Point Sources

For point sources located between 30" and 110" away from the group location, the point source region was masked and remaining flux in the aperture modelled and subtracted.

Modelling Central Point Sources

In cases where the point source was closer, the point source and group emission were modelled using the PSF and a beta model, and the proportion of emission expected from the group found.

1 June 2023

Testing N \geq 5 cut-off

Comparing Luminosities

XXL: Pacaud et al. (2016) Crossett et al. (2022)

1 June 2023

Luminosity - Mass Relation

1 June 2023

Recovering Low Count Rates

1 June 2023

Euclid & eROSITA

- \swarrow DR1 / eRASS:1 overlap \sim 1,250 deg²
 - estimate 5,000 clusters
- \swarrow DR3 / eRASS:4 overlap \sim 7,500 deg 2
 - estimate 60,000 clusters

Forecast from Sartoris+ (2016)